Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells.

نویسندگان

  • Kyoung-Yeol Kim
  • Wulin Yang
  • Bruce E Logan
چکیده

Efficient treatment of domestic wastewater under continuous flow conditions using microbial fuel cells (MFCs) requires hydraulic retention times (HRTs) that are similar to or less than those of conventional methods such as activated sludge. Two MFCs in series were compared at theoretical HRTs of 8.8, 4.4 and 2.2 h using two different brush-electrode MFC configurations: a full brush evenly spaced between two cathodes (S2C); and trimmed brush anodes near a single cathode (N1C). The MFCs with two cathodes produced more power than the MFCs with a single cathode, with 1.72 mW for the S2C, compared to and 1.12 mW for the N1C at a set HRT = 4.4 h. The single cathode MFCs with less cathode area removed slightly more COD (54.2 ± 2.3%, N1C) than the two-cathode MFCs (48.3 ± 1.0%, S2C). However, the higher COD removal was due to the longer HRTs measured for the MFCs with the N1C configuration (10.7, 5.3 and 3.1 h) than with the S2C configuration (7.2, 3.7 and 2.2 h), despite the same theoretical HRT. The longer HRTs of the N1C MFCs also resulted in slightly higher coulombic efficiencies (≤37%) than those of the S2C MFCs (≤29%). While the S2C MFC configuration would be more advantageous based on electrical power production, the N1C MFC might be more useful on the basis of capital costs relative to COD removal efficiency due to the use of less cathode surface area per volume of reactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% hi...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Production of electricity during wastewater treatment using a single chamber microbial fuel cell.

Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbi...

متن کامل

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations.

The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics remo...

متن کامل

Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures.

Domestic wastewater treatment was examined under two different temperature (23+/-3 degrees C and 30+/-1 degrees C) and flow modes (fed-batch and continuous) using single-chamber air-cathode microbial fuel cells (MFCs). Temperature was an important parameter for treatment efficiency and power generation. The highest power density of 422 mW/m(2) (12.8 W/m(3)) was achieved under continuous flow an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2015